9 research outputs found

    Ambient Air Quality Classification by Grey Wolf Optimizer Based Support Vector Machine

    Get PDF
    With the development of society along with an escalating population, the concerns regarding public health have cropped up. The quality of air becomes primary concern regarding constant increase in the number of vehicles and industrial development. With this concern, several indices have been proposed to indicate the pollutant concentrations. In this paper, we present a mathematical framework to formulate a Cumulative Index (CI) on the basis of an individual concentration of four major pollutants (SO2, NO2, PM2.5, and PM10). Further, a supervised learning algorithm based classifier is proposed. This classifier employs support vector machine (SVM) to classify air quality into two types, that is, good or harmful. The potential inputs for this classifier are the calculated values of CIs. The efficacy of the classifier is tested on the real data of three locations: Kolkata, Delhi, and Bhopal. It is observed that the classifier performs well to classify the quality of air

    Performance Evaluation of Ingenious Crow Search Optimization Algorithm for Protein Structure Prediction

    Get PDF
    Protein structure prediction is one of the important aspects while dealing with critical diseases. An early prediction of protein folding helps in clinical diagnosis. In recent years, applications of metaheuristic algorithms have been substantially increased due to the fact that this problem is computationally complex and time-consuming. Metaheuristics are proven to be an adequate tool for dealing with complex problems with higher computational efficiency than conventional tools. The work presented in this paper is the development and testing of the Ingenious Crow Search Algorithm (ICSA). First, the algorithm is tested on standard mathematical functions with known properties. Then, the application of newly developed ICSA is explored on protein structure prediction. The efficacy of this algorithm is tested on a bench of artificial proteins and real proteins of medium length. The comparative analysis of the optimization performance is carried out with some of the leading variants of the crow search algorithm (CSA). The statistical comparison of the results shows the supremacy of the ICSA for almost all protein sequences

    Application and Development of Enhanced Chaotic Grasshopper Optimization Algorithms

    No full text
    In recent years, metaheuristic algorithms have revolutionized the world with their better problem solving capacity. Any metaheuristic algorithm has two phases: exploration and exploitation. The ability of the algorithm to solve a difficult optimization problem depends upon the efficacy of these two phases. These two phases are tied with a bridging mechanism, which plays an important role. This paper presents an application of chaotic maps to improve the bridging mechanism of Grasshopper Optimisation Algorithm (GOA) by embedding 10 different maps. This experiment evolves 10 different chaotic variants of GOA, and they are named as Enhanced Chaotic Grasshopper Optimization Algorithms (ECGOAs). The performance of these variants is tested over ten shifted and biased unimodal and multimodal benchmark functions. Further, the applications of these variants have been evaluated on three-bar truss design problem and frequency-modulated sound synthesis parameter estimation problem. Results reveal that the chaotic mechanism enhances the performance of GOA. Further, the results of the Wilcoxon rank sum test also establish the efficacy of the proposed variants

    Prediction of Infectious Disease to Reduce the Computation Stress on Medical and Health Care Facilitators

    No full text
    Prediction of the infectious disease is a potential research area from the decades. With the progress in medical science, early anticipation of the disease spread becomes more meaningful when the resources are limited. Also spread prediction with limited data pose a deadly challenge to the practitioners. Hence, the paper presents a case study of the Corona virus (COVID-19). COVID-19 has hit the major parts of the world and implications of this virus, is life threatening. Research community has contributed significantly to understand the spread of virus with time, along with meteorological conditions and other parameters. Several forecasting techniques have already been deployed for this. Considering the fact, the paper presents a proposal of two Rolling horizon based Cubic Grey Models (RCGMs). First, the mathematical details of Cubic Polynomial based simple grey model is presented than two models based on time series rolling are proposed. The models are developed with the time series data of different locations, considering diverse overlap period and rolling values. It is observed that the proposed models yield satisfactory results as compared with the conventional and advanced grey models. The comparison of the performance has been carried out with calculation of standard error indices. At the end, some recommendations are also framed for the authorities, that can be helpful for decision making in tough time

    Performance Evaluation of Ingenious Crow Search Optimization Algorithm for Protein Structure Prediction

    No full text
    Protein structure prediction is one of the important aspects while dealing with critical diseases. An early prediction of protein folding helps in clinical diagnosis. In recent years, applications of metaheuristic algorithms have been substantially increased due to the fact that this problem is computationally complex and time-consuming. Metaheuristics are proven to be an adequate tool for dealing with complex problems with higher computational efficiency than conventional tools. The work presented in this paper is the development and testing of the Ingenious Crow Search Algorithm (ICSA). First, the algorithm is tested on standard mathematical functions with known properties. Then, the application of newly developed ICSA is explored on protein structure prediction. The efficacy of this algorithm is tested on a bench of artificial proteins and real proteins of medium length. The comparative analysis of the optimization performance is carried out with some of the leading variants of the crow search algorithm (CSA). The statistical comparison of the results shows the supremacy of the ICSA for almost all protein sequences

    Development and Applications of Augmented Whale Optimization Algorithm

    No full text
    Metaheuristics are proven solutions for complex optimization problems. Recently, bio-inspired metaheuristics have shown their capabilities for solving complex engineering problems. The Whale Optimization Algorithm is a popular metaheuristic, which is based on the hunting behavior of whale. For some problems, this algorithm suffers from local minima entrapment. To make WOA compatible with a number of challenging problems, two major modifications are proposed in this paper: the first one is opposition-based learning in the initialization phase, while the second is inculcation of Cauchy mutation operator in the position updating phase. The proposed variant is named the Augmented Whale Optimization Algorithm (AWOA) and tested over two benchmark suits, i.e., classical benchmark functions and the latest CEC-2017 benchmark functions for 10 dimension and 30 dimension problems. Various analyses, including convergence property analysis, boxplot analysis and Wilcoxon rank sum test analysis, show that the proposed variant possesses better exploration and exploitation capabilities. Along with this, the application of AWOA has been reported for three real-world problems of various disciplines. The results revealed that the proposed variant exhibits better optimization performance

    Local Grey Predictor Based on Cubic Polynomial Realization for Market Clearing Price Prediction

    No full text
    With the development of restructured power markets, the profit-making competitive business environment has emerged. With the help of different advanced technologies, generating companies are taking decisions regarding trading electricity with imperfect information about marketing operating conditions. The forecasting of the market clearing price (MCP) is a potential issue in these markets. Early information on the MCP can be a proven beneficial tool for accumulating profit. In this work, a local grey prediction model based on a cubic polynomial function is presented to estimate the MCP with the help of historical data. The mathematical framework of this grey model was established and evaluated for different market conditions and databases. The comparison between traditional grey models and some advanced grey models reveals that the proposed model yields accurate results

    Local Grey Predictor Based on Cubic Polynomial Realization for Market Clearing Price Prediction

    No full text
    With the development of restructured power markets, the profit-making competitive business environment has emerged. With the help of different advanced technologies, generating companies are taking decisions regarding trading electricity with imperfect information about marketing operating conditions. The forecasting of the market clearing price (MCP) is a potential issue in these markets. Early information on the MCP can be a proven beneficial tool for accumulating profit. In this work, a local grey prediction model based on a cubic polynomial function is presented to estimate the MCP with the help of historical data. The mathematical framework of this grey model was established and evaluated for different market conditions and databases. The comparison between traditional grey models and some advanced grey models reveals that the proposed model yields accurate results

    Congenital rubella syndrome surveillance in India, 2016–21: Analysis of five years surveillance data

    No full text
    Background: In India, facility-based surveillance for congenital rubella syndrome (CRS) was initiated in 2016 to estimate the burden and monitor the progress made in rubella control. We analyzed the surveillance data for 2016–2021 from 14 sentinel sites to describe the epidemiology of CRS. Method: We analyzed the surveillance data to describe the distribution of suspected and laboratory confirmed CRS patients by time, place and person characteristics. We compared clinical signs of laboratory confirmed CRS and discarded case-patients to find independent predictors of CRS using logistic regression analysis and developed a risk prediction model. Results: During 2016–21, surveillance sites enrolled 3940 suspected CRS case-patients (Age 3.5 months, SD: 3.5). About one-fifth (n = 813, 20.6%) were enrolled during newborn examination. Of the suspected CRS patients, 493 (12.5%) had laboratory evidence of rubella infection. The proportion of laboratory confirmed CRS cases declined from 26% in 2017 to 8.7% in 2021. Laboratory confirmed patients had higher odds of having hearing impairment (Odds ratio [OR] = 9.5, 95% confidence interval [CI]: 5.6–16.2), cataract (OR = 7.8, 95% CI: 5.4–11.2), pigmentary retinopathy (OR = 6.7, 95 CI: 3.3–13.6), structural heart defect with hearing impairment (OR = 3.8, 95% CI: 1.2–12.2) and glaucoma (OR = 3.1, 95% CI: 1.2–8.1). Nomogram, along with a web version, was developed. Conclusions: Rubella continues to be a significant public health issue in India. The declining trend of test positivity among suspected CRS case-patients needs to be monitored through continued surveillance in these sentinel sites
    corecore